Toward efficient distribution of MPDATA stencil computation on Intel MIC architecture
نویسندگان
چکیده
The multidimensional positive definite advection transport algorithm (MPDATA) belongs to the group of nonoscillatory forward-in-time algorithms, and performs a sequence of stencil computations. MPDATA is one of the major parts of the dynamic core of the EULAG geophysical model. The Intel Xeon Phi coprocessor is the first product based on the Intel Many Integrated Core (Intel MIC) architecture. This architecture offers notable performance advantages over traditional processors, and supports practically the same traditional parallel programming model. In this work, we outline an approach to adaptation of the 3D MPDATA algorithm to the Intel MIC architecture. This approach is based on combination of temporal and space blocking techniques, and allows us to ease memory and communication bounds and better exploit the theoretical floating point efficiency of target computing platforms. In order to utilize computing resources available in Intel Xeon Phi, the proposed approach employs two main levels of parallelism: (i) task parallelism which allows for utilization of more than 200 logical cores, and (ii) data parallelism to use efficiently 512-bit vector processing units. An important method of improving the efficiency of the block decomposition is partitioning of available cores/threads into teams. It allows us to reduce inter-cache communication overheads. Also, this method increases opportunities for the efficient distribution of MPDATA computation onto available resources. The purpose is to provide the trade-off between two coupled criteria: load balancing and intra-cache communication. We discuss performance results obtained on two platforms, including either two Intel Xeon E5-2643 CPUs and Intel Xeon Phi 3120A, or two Intel Xeon E5-2697 v2 CPUs and Intel Xeon Phi7120P. The top-of-the-line Intel Xeon Phi 7120P gives the best performance results for all tests. The achieved performance results provide a basis for fur-
منابع مشابه
Cluster-level tuning of a shallow water equation solver on the Intel MIC architecture
The paper demonstrates the optimization of the execution environment of a hybrid OpenMP+MPI computational fluid dynamics code (shallow water equation solver) on a cluster enabled with Intel Xeon Phi coprocessors. The discussion includes: 1. Controlling the number and affinity of OpenMP threads to optimize access to memory bandwidth; 2. Tuning the inter-operation of OpenMP and MPI to partition t...
متن کاملEvaluating multi-core and many-core architectures through accelerating the three-dimensional Lax-Wendroff correction stencil
Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time-consuming, which greatly limits their performance and power efficiency. In this paper, we accelerate the forward-modeling technique on the latest multi-co...
متن کاملModel-based optimization of MPDATA on Intel Xeon Phi through load imbalancing
Load balancing is a widely accepted technique for performance optimization of scientific applications on parallel architectures. Indeed, balanced applications do not waste processor cycles on waiting at points of synchronization and data exchange, maximizing this way the utilization of processors. In this paper, we challenge the universality of the load-balancing approach to optimization of the...
متن کاملGuidelines to Enhance 3-D Stencil Codes on the Intel Xeon Phi Coprocessor
Accelerators like the Intel Xeon Phi aim to fulfill the computational requirements of modern applications, including stencil computations. Stencils are finite-difference algorithms used in many scientific and engineering applications for solving large-scale and high-dimension partial differential equations. However, programmability on such massively parallel architectures is still a challenge f...
متن کاملA Multilevel Parallelization Framework for High-Order Stencil Computations
Stencil based computation on structured grids is a common kernel to broad scientific applications. The order of stencils increases with the required precision, and it is a challenge to optimize such high-order stencils on multicore architectures. Here, we propose a multilevel parallelization framework that combines: (1) inter-node parallelism by spatial decomposition; (2) intra-chip parallelism...
متن کامل